37 resultados para Variant hemoglobin

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter is concerned with the influence of the brain microcirculation on the development of the pathological changes in Creutzfeldt-Jakob disease (CJD). Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the blood vessels; the PrP deposits being the more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and blood vessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation appears to be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of these PrP aggregates is important both in attempting to the elucidate of the pathogenesis of prion disease and in the development of treatments designed to prevent or inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein aggregates. Mathematical models suggest that if aggregation/disaggregation or surface diffusion is the predominant factor, the size frequency distribution of the resulting protein aggregates in the brain should be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different types of PrP deposit, viz., the diffuse and florid-type PrP deposits in patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse plaques were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of plaque deviated significantly from a log-normal model in all brain areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid plaques. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse plaques. These results may be useful in the design of treatments to inhibit the development of protein aggregates in vCJD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological changes in striate (B17, V1) and extrastriate (B18, V2) visual cortex were studied in variant Creutzfeldt-Jakob disease (vCJD). No differences in densities of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of prion protein (PrP) were greater in B18. PrP deposit densities in B17 and B18 were positively correlated. Diffuse deposit density in B17 was negatively correlated with the density of surviving neurons in B18. The vacuoles either exhibited a density peak in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse deposits were most frequent in laminae II/III and florid deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI than in B17. Hence, both striate and extrastriate visual cortex is affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 appears to be associated with diffuse PrP deposit formation in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To determine in the cerebellum in variant Creutzfeldt–Jakob disease (vCJD): (i) whether the pathology affected all laminae; (ii) the spatial topography of the pathology along the folia; (iii) spatial correlations between the pathological changes; and (iv) whether the pathology was similar to that of the common methionine/methionine Type 1 subtype of sporadic CJD. Methods: Sequential cerebellar sections of 15 cases of vCJD were stained with haematoxylin and eosin, or immunolabelled with monoclonal antibody 12F10 against prion protein (PrP) and studied using spatial pattern analysis. Results: Loss of Purkinje cells was evident compared with control cases. Densities of the vacuolation and the protease-resistant form of prion protein (PrPSc) (diffuse and florid plaques) were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques occurred in clusters regularly distributed along the folia with larger clusters of vacuoles and diffuse plaques in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML. There was a positive spatial correlation between the vacuoles and diffuse PrPSc plaques in the ML and GL. Conclusions: (i) all laminae were affected by the pathology, the GL more severely than the ML; (ii) the pathology was topographically distributed along the folia especially in the Purkinje cell layer and ML; (iii) pathological spread may occur in relation to the loop of anatomical connections involving the cerebellum, thalamus, cerebral cortex and pons; and (iv) there were pathological differences compared with methionine/methionine Type 1 sporadic CJD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TThe size frequency distributions of ß-amyloid (Aß) and prion protein (PrPsc) deposits were studied in Alzheimer’s disease (AD) and the variant form of Creutzfeldt-Jakob disease (vCJD) respectively. All size distributions were unimodal and positively skewed. Aß deposits reached a greater maximum size and their distributions were significantly less skewed than the PrPsc deposits. All distributions were approximately log-normal in shape but only the diffuse PrPsc deposits did not deviate significantly from a log-normal model. There were fewer larger classic Aß deposits than predicted and the florid PrPsc deposits occupied a more restricted size range than predicted by a log-normal model. Hence, Aß deposits exhibit greater growth than the corresponding PrPsc deposits. Surface diffusion may be particularly important in determining the growth of the diffuse PrPsc deposits. In addition, there are factors limiting the maximum size of the Aß and florid PrPsc deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to test the hypothesis that the size frequency distributions of the prion protein (PrP) plaques in cases of variant Creutzfeldt-Jakob disease (vCJD) follow a power-law function. The design was a retrospective neuropathological study. The patients were 11 cases of clinically and neuropathologically verified vCJD. Size distributions of the diffuse and florid-type plaques were measured in several areas of the cerebral cortex and hippocampus from each case and a power-law function fitted to each distribution. The size distributions of the florid and diffuse plaques were fitted successfully by a powerlaw function in 100% and 42% of brain areas investigated respectively. Processes of aggregation/disaggregation may be more important than surface diffusion in the pathogenesis of the florid plaques. By contrast, surface diffusion may be a more significant factor in the development of the diffuse plaques. © Springer-Verlag Italia 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency distribution of aggregate size of the diffuse and florid-type prion protein (PrP) plaques was studied in various brain regions in cases of variant Creutzfeldt-Jakob disease (vCJD). The size distributions were unimodal and positively skewed and resembled those of β-amyloid (Aβ) deposits in Alzheimer's disease (AD) and Down's syndrome (DS). The frequency distributions of the PrP aggregates were log-normal in shape, but there were deviations from the expected number of plaques in specific size classes. More diffuse plaques were observed in the modal size class and fewer in the larger size classes than expected and more florid plaques were present in the larger size classes compared with the log-normal model. It was concluded that the growth of the PrP aggregates in vCJD does not strictly follow a log-normal model, diffuse plaques growing to within a more restricted size range and florid plaques to larger sizes than predicted. © Springer-Verlag 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine whether in cases of variant Creutzfeldt-Jakob disease (vCJD), the florid-type plaques are derived from the diffuse plaques or whether the 2 plaque types develop independently. Material: Blocks of frontal, parietal, occipital and temporal neocortex and cerebellar cortex from 11 cases of vCJD. Method: The density, distribution and spatial pattern of the florid and diffuse plaques were determined in each brain region using spatial pattern analysis. Results: The density of the diffuse plaques was significantly greater than that of the florid plaques in most areas. The ratio of the diffuse to florid plaques varied between brain regions and was maximal in the molecular layer of the cerebellum. The densities of the florid and diffuse plaques were positively correlated in the parietal cortex, occipital cortex, the inferior temporal gyrus and the dentate gyrus. Plaque densities were not related to disease duration. In the cerebral cortex, the diffuse plaques were more commonly evenly distributed or occurred in large clusters along the cortex parallel to the pia mater compared with the florid plaques which occurred more frequently in regularly distributed clusters. Conclusion: The florid plaques may not be derived from the diffuse plaques, the 2 plaque types appearing to develop independently with unique factors involved in their pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease. © 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study tested the hypothesis that variations in the density of the florid prion protein (PrP) plaques in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) were spatially related to blood vessels. In 81% of areas of the cerebral cortex sampled and in 37% of the remaining areas, which included the hippocampus, dentate gyrus, and cerebellum, there was a positive spatial correlation between the density of the florid plaques and the larger blood vessel profiles. The frequency of the positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower cortical laminae. The data support the hypothesis that the florid plaques cluster around the larger blood vessels in vCJD, the density of associated plaques increasing with vessel size. The development of florid plaques close to blood vessels may be due to factors associated with the blood vessels that enhance the aggregation of PrP to form the dense cores of florid plaques and is unlikely to reflect the haematogenous spread of PrP into the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the pattern of cortical degeneration in cases of variant Creutzfeldt-Jakob disease (vCJD), the laminar distribution of the vacuolation ("spongiform change"), surviving neurones, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal lobes. The vacuolation exhibited two common patterns of distribution: either the vacuoles were present throughout the cortex or a bimodal distribution was present with peaks of density in the upper and lower cortical laminae. The distribution of the surviving neurones was highly variable in different regions; the commonest pattern being a uniform distribution with cortical depth. Glial cell nuclei were distributed largely in the lower cortical laminae. The non-florid PrP deposits exhibited either a bimodal distribution or exhibited a peak of density in the upper cortex while the florid deposits were either uniformly distributed down the cortex or were present in the upper cortical laminae. In a significant proportion of areas, the density of the vacuoles was positively correlated with either the surviving neurones or with the glial cell nuclei. These results suggest similarities and differences in the laminar distributions of the pathogenic changes in vCJD compared with cases of sporadic CJD (sCJD). The laminar distribution of vacuoles was more extensive in vCJD than in sCJD whereas the distribution of the glial cell nuclei was similar in the two disorders. In addition, PrP deposits in sCJD were localised mainly in the lower cortical laminae while in vCJD, PrP deposits were either present in all laminae or restricted to the upper cortical laminae. These patterns of laminar distribution suggest that the process of cortical degeneration may be distinctly different in vCJD compared with sCJD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuolation ('spongiform change') and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus, dentate gyrus and molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The density of vacuoles was greater in the cerebral cortex compared to the hippocampus, dentate gyrus and cerebellum. Within the cortex, vacuole density was significantly greater in the occipital compared to the temporal lobe and the density of surviving neurones was greatest in the occipital lobe. The density of the non-florid PrP plaques was greater in the cerebellum compared to the other brain areas. There were significantly more florid-type PrP plaques in the cerebral cortex compared to the hippocampus and the molecular layer of the cerebellum. No significant correlations were observed between the densities of the vacuoles and the PrP plaques. The densities of vacuoles in the parietal cortex and the non-florid plaques in the frontal cortex were positively correlated with the density of surviving neurones. The densities of the florid and the non-florid plaques were positively correlated in the parietal cortex, occipital cortex, inferior temporal gyrus and dentate gyrus. The data suggest: (i) vacuolation throughout the cerebral cortex, especially in the occipital lobe, but less evident in the hippocampus and molecular layer of the cerebellum; (ii) the non-florid plaques are more common than the florid plaques and predominate in the molecular layer of the cerebellum; and (iii) either the florid plaques develop from the non-florid plaques or both types are morphological variants resulting from the same degenerative process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of the vacuolation ('spongiform change') was studied in areas of the cerebral cortex in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The vacuoles were evenly distributed along the cortex in 40/106 (38%) areas studied and randomly distributed in 6/106 (5.6%) areas. In 22/106 (21%) areas, the vacuoles were aggregated into clusters, 50 - 1600 μm in diameter and which were distributed in a regular pattern parallel to the pia mater. In 38/106 (36%) areas, large clusters of vacuoles, at least 1600 μm in diameter, were present. No significant differences in spatial patterns were observed between the different cortical regions or between the upper and lower laminae. In addition, age at onset and duration of the disease had no significant affect on spatial patterns. The spatial distribution of the vacuolation contrasts with that reported in sporadic CJD (sCJD) suggesting a different pattern of cortical degeneration in vCJD.